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SECTION I

INTRODUCTION

As described in a number of recent reports (ref. 1,2,3)
the calculation of EMP energy propagation within an
electrically complex system, such as an aircraft, often
employs simple transmission line theory. Such propagaticn
models usually consist of one or more uniform trans-
mission 1lines with discrete loads and distributed sources
arising from the incident electromagnetic fields. In
order to more accurately account for the nonuniform
surroundings of actual transmission lines con aircraft,
a number of "canénical problems" have been suggested in
ref. (4). By solving such problems, it is possible to
obtain estimates of the effects of local perturbations of

the transmission line fields, and later relate these to

l. Tesche, P.M., and T.K. Liu, "An Electric Model for a Cable
Clamp on a Single Wire Transmission Line," Report on
Contract F-29601-76-0125, AFWL-TR-76-325, Air Force Weapons
Laboratory, Kirtland AFB, NM, July 1976.

2. Lam, John, "Equivalent Lumped Parameters for a Bend in a
Two Wire Transmission Line: Part I. Inductance; Part II.
Capacitance," Report on Contract F-29601-76-0125, AFWL-TR-
77-5, Air Force Weapons Laboratory, Kirtland AFB, NM,
Decemker 1976.

3. Liu, T.K., "Electromagnetic Coupling between Multiconductor
Transmission Lines," Report on Contract F-29601-76-0125,
AFWL-TR-76-333, Air Force Weapons Lakoratory, Kirtland
AFB, NM, December 1975.

4. Tesche, F.M., M.A. Morgan, and B.A. Fishbine, "Evaluation
of Present Internal EMP Interaction Technology: Description
of Needed Improvements," AFWL EMP Interaction Note 264,

Air Force Weapons Laboratory, Kirtland AFB, NM, Octcber 19753.
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lumped inductances and capacitances placed approoriately
along an otherwise uniform transmission line. This concept

1s discussed in more detail in ref. (1).

One particular geometry that is often observed in
the internal configurations of aircraft cables is shown
in Figure 1, where a single wire transmission line of
radius a and height b above the ground plane passes
over a thin septum of height h. The wire and the septum
are mutually perpendicular and not touching. Such a
problem will model a cable passing over a rib in an aircraft
fuselage or wing root. By considering many periodically
spaced septums, pass and stop band characteristics can
be determined for the line, as outlined in ref. (2).

In the treatment of this problem, it will be T 23
assumed that the septum thickness is very small. This
implies that the major effect on the transmission line
behavior will be due to a camacitive term in the lumped
parameter representation of the obstacle. The equivalent
circuit of the septum discontinuity can then be repre-
sented, as shown in Figure 2.

This paper describes in detail the calculation of
this equivalent capacitance of the septum and presents

the results of a parametric study of this cancnical

problem.
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SECTION II
FORMULATION OF COUPLED INTEGRAL EQUATIONS

The equivalent capacitance of the septum discontinuity
shown in Figure 2 may be obtained by solving Laplace's
equation, subject to certain boundary conditions. If a
Green's function approach is used, the problem may be
reduced to the solution of a set of coupled integral eguations
for the unknown excess charge distribution on the wire
and the charge distribtuion on the septum.

The three-dimensional free-space Green's function

is given by
- - -> > -l
G (r/r') = dme ]r—r'i} (1)

where €5 is the permittivity of free-space, r 1is the

-+ . . .. - .
radius vector to a potential point, and r' the radius
vector to a charge point. Using image theory, the perfectly

conducting ground plane may be incorporated in the half-

space Green's function G, given by

"y 3 . . S .
where r£ is the radius vector to an image charge point.

The superposition principle now shows that

|




where 7y is the surface charge density on the wire,

c, 1s the charge distribution on the septum, V is the poten-

tial on the wire (with respect to the ground plane), Tl and
72 correspond to the surface of the wire and diaphragm
respectively. The coupled integral Equations (3) state

that the potential on the wire or the diaphragm is pro-

duced by the charge distribtuions and

94 Ty
The charge distribution o2 contains two parts:

a uniform charge distribution I in the absence of the

)

septum and an excess charge distribution 854 caused by

the septum discontinuity, i.e.,

This allows Equation (3) to be written as
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). Note that the integral on the right side
of Equation (5a) defines the potential V on the uniform 1i
ancd the right-~hand side of Equation (5b) is the potential

;(r7/r') at r, due to the uniform line at ;i - Equations

5a) and (5b) can be reexpressed as:

where | 1is known exactly by suitable conformal trans-

formation (cf. ref. 5). Equations (6a) and (6b) are the desired
coupled integral equations where 571 and 7, are sought.
Note that these equations are exact.
5. Silvester, P., Modern Electromagnetic Fields, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1948,
9
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SECTION III

APPROXIMATE SOLUTION OF THE COUPLED INTEGRAL EQUATION

A rigorous solution of Equations (6a) ancé (6b) involves
integrals of the form
o 0 2"
s cos (nf ') ; (7
a_(£)d4dg ds' (7)
Labyd 2 2. .2 88"
n=0 -= 0 (z=c)  + 4da> sip e
where 8 and &' are standard polar cylindrical coordinates
>on the wire. Equation (7) is obtained by assuming that
o]
571(5,%') = an(g) cos(ng') (8)
n=0
This is equivalent to writing the Fourier series expansion
for 531 with coefficients an that are functions of ¢£.
Note that the integral over [0,27] has a logarithmic
singularity for 2z=f and 6=8'; it cannot be integrated

exactly for all values of

n. An approximate solution,

which is equivalent to truncating the Fourier series

expansion at

literature as the "thin-wire approximation",

n=0, is used. This is often referred to in the

and is an

idequate approximation provided that the wire radius is small

compared to other dimensions of the problem.

A second

approximation is introduced by assuming that the charge

distribution on the septum is uniform in the vy

. .i_.v_——'—n:!‘-—v—_; e i S T “w WY
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Note that the charge distribution on the septum has a

square root singularity at the edge of the septum; the last
approximation may be thus regarded as a first order approxi-
mation. The variational properties of the capacitance,
however, lead to a second order approximation in the capaci-
tance results. Here, (xk + Y +2_) denotes the actual

0
dimension in cartesian coordinates.

Applying the thin-wire approximation to Equation

we have
So- (FL) 6. d8! B ot ,r-j_ (et K. ix /=) ax’ (9a)
gl Al Sy Ry B S 11 %o/ %ot %o ~
.l -0
L £ i i & o ' e 33!
f S e S f L) By (Vg B /X0 ax;  (9b)
‘l -
where Srl(xé) is a linear charge density related to

via the relation
(xé) = 27a 5ﬂl(rl)

and the kernels K;j and K21 are given by

! - 5 'y 2 2_"'5_ ‘-'2+4b2}-%(
Kll(xo/‘,‘o) = {(,<O—xo) + a } {(.<O xo)

[
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Ry (Vs 2,/%0) = {(xé)z 2224 ("o-b)z}-%
-{(}%)2 + 22+ <yo+b)2}'LS (12)
Now assuming that
0,(F3) = E(yl) 1,(2) (13)
where rz(zé) is a linear charge density and f(yé) is

uniform along the yé direction and has dimensions of

Coul/m; Eguation (6) now shows that

o h
= ~ g 1 o 1y ' : et ' oyt
f‘*z‘rz) 12 952 = Tye _[Tz(zo’dzof K12 (X Yg1 25047,
ha i < (14)
o h
3, (E}) G,, dS§ & i S(zyaz! Koo (¥ 2 /vt 28)dy
22 22 2k 4nao bl o 22" oliso yo’ il e,
3 e < (15)

where the kernels KlZ and K22 are given by

’ ; S L 2 Loy 2 w2 =%
xlz(xo/yo,zo) = {xo + (b yo) " }

-
2 2 2
- {xo + (b+yl)© + (z3) } (16)
L2
T T TR TR R R R gt g T g T B matan e s e -
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-
- {(yo*yc'))z + (z-z('))z} (17)

Note that f(yé) has been assumed constant and has been

. ; * * 3 : Y
incorporated in Tt,. T, has dimensions of Coul/m*,

Equations (9) through (17) allow the coupled integral

equations (6) to be written as

oY) o) h

ST (X') K (X /X') ax' + T*(Z') dz' > L) VN Ayt

L N 11 es o e} 2R 0 o K12(‘{0/50'20)*“’0 =
-0 =00 (@]

-0 < X < (1%a)
© 0 h
1 ] 7 17 ] 3

fﬁtl(xo) KZl(yO' Zo/xé) dxo + IT2 (Zé)dzo'f Azz(yo,zc/yo,zo)cz'_.'
~® -0 o)

U ity g % B s (18b)

For computational purposes it is convenient to

introduce dimensional variables and functions given by

13
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With this choice of variables and functions, the

coupled integral equations (18) take the form

x© 0 h/b
j-;(x') Lll(x/x') dx' + jn(z') dz'f le(x/y',z’)dy’ =

-0 -0 Q

-0 < X < o (20a)

0 © h/b
J[ %% Lzl‘Y'Z/X‘)GX‘ + J[ n<2'hi2'Jf Lzz(y,Z/Y',z'>dy'
-0 -0 (o)
= <47 ¢ (y,2)
02 ¢ S h/b, =o< 2<» (20b)
Note that the integration of L1z and L22 over

(0,h/b) may be performed exactly (cf. ref. 6); Equation (20)

is thus reduced to

Table of Integrals

6. Gradshteyn,

I.S. and Ryzhik, I.M.,

Series and Products,

Academic Press,

New York,

1965.
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b el

-0
X
J[ i’x')Lﬁl\,,
-0
= =47
*
where L12 and

*
L22(y,2/2 ) =

j-f(ﬂ')Lll(x/X')dx' + J[ q(Z')LIZ(X/Z')dZ' =0
=0 < X< @
> /') 3! ‘ ' G /
2/ X' )dx" + f"\(: )Lzz(y,: z')dz'
\Y,2)
6 Sy S hiv, - Z '3
x
L22 are given by
o
Wi & (1eh/B)® + (£')% = (1 - h/b)
£ + 1+ 2=
Vx? + (1+h/B)° + (z")2 + (1 + h/b)
\]xz + (z')2 + 1 +1
o Vit/b-y)2 + (=212 + (h/b - y)
\/yz i (z-z')2 Y
‘\/(h e e« d
% /b+y) ¢ + (z=2') (h/b + y)

Vg2 + (2292 4y

(21la)




The coupled integral equation (21) may be solved
by using the following Galerkin's approach. First inte-
grating Equation (21b) with respect to y aives

x o

j-i(X')Lll(x/x')dx' + J[ h(z')LIZ(x/z')dz' = 0
=g £ X &
o o (24)
- ] > [] S ¢ 1 ARk ' [] /
£ (x )L21(z/x ydx' + n(z )L22(z/z Idz! = n(z)

=00 £ Z < ‘@

* %
where the kernels L;l and L,, are obtained by intecrating
*
L2l and L22 with respect to y over (0,h/b). Similarly,
obtained by integrating =479 over (9O,h/b). These are
given by
i o= LY (x/z")
Ly (z/x') = 12 (%72
b o Viz-z1)% + (h/b)2 + (w/b)
Ly z/z’) = = o
22 b 5 3
Wl(z-z') + (h/b) - (h/b)
2h , Vi(z-z2)2 + (h/b) + (h/b)
ar F Zn

Viz-2'32 + (2h/b)% + (2n/b)

&

3lz=2'| + \/(z-z')z +(2h/b)2 - 4 (z—z')2-+(h/b)

t

(26)

n is




2
e 27 e (1422
(2) = - 5—T—7577 -
‘n (a/2b) ((1=h/B)} % + 2°%] [(1+h/b)% + 2°]

By ® & 2°

+ % in

- 2t:an-l (l/z)]

where, again, use was made of table of inte

(1+h/b)2 + z2

H
o)}

rals (re

0

* %
Note that L72 (z/2') has a logarithmic singularity

| and Lll

For computational purposes,

-in |z-2'

First write

* %
L

P L il

where F(z/z')

(x/x') has a sharp peak at x=x'.

these may be treated as follows:

in |z-2'| + F(z/2") (28)

is continuous throughout the interval

(-=2). Next integrate by parts the integral in egquation (24)

which contains Lll (x/x")

x

ox'

-

x

J. £(x') L;, (z/x') dx' +

-0

il T, T G Y T - L

%o : %
j’ a5 (x') L;l (x/x') dx' + j‘w(z') le (Retidzl =g

Equation (24) then becomes
> 1
-0 x < ©

0

jp nitz') Eilzfz") 4z’ ) (

ro
O

5

|
<
™
.




where > -
* - (x'=x)" + (a/b) + (x!=x)
L (x/x') = 2n
1l :
ﬂJ(x'-x) + 4+ (et =)
Equation (29) is noted to have a smoother integrand than

(

uation (24), which is more amenable to numerical computations;

g3}
WQ

the integrand containing the logarithm will be ewvaluated 1in
closed form in Section V. The second stage in the use of
Galerkin's approach for obtaining the solution to Egquation (29)
regquires knowledge of the properties of Hermite polynomials

and the Gauss-Hermite formula. These will be discussed in

the following section.
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SECTION 1V
HERMITE POLYNOMIALS

The Hermite polynomials Hj(é) are defined over the

infinite interval (—=,») and satisfy the orthogonality

conditions

o RN
fe OB (] B.(E) ac =47 2% 11 &, (30)

where dij is the Kronecker delta.

The first few Hermite polynomials are:
B (E) = 1, B, (g) =2, H,le) =48’ -2 (31)

and the recurrence relation is

B, (E) - 25 H (£) + 2n H_ _,(E) =0 s

These arise in integration over (-=,»), and the Gauss-

Hermite formula for approximating the integral is given by

© N
_52
- k=1
= i th - 3 :
where ‘x is the k zero of Hn(;) and the weiaghts

is given by

L3

A e e—— A
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5 Zn_l n! /7
k n2 (H

2 2

The weights Wy

example, by Abramowitz and Stegun

and abscissas

ik are given, for
2

(zef. 7).

7. Abramowitz, M., and J.A. Stegun, Handbook of Mathematical
Functions, New York: Dover Publications, 1964.




SECTION V
NUMERICAL SOLUTIONS OF THE COUPLED INTEGRAL EQUATIONS
The coupled integral equation (29) is reduced to a

set of algebraic equations by using a Galerkin's approach

with Hermite polynomials as base functions. Assuming that
N
£ (x') = e_<x')2 a_ H_(x')
i ntn
n=0
(35
> N
Pl ) : '
tz*) e B dm(z )
m=0
where a_, b, are coefficients to be determined, and i, ()

is Hermite polynomial of order 4 . Further, note that

x0 ’2
_2h s ' 8 | 5wt PR e -z (I /2! 3 '
> Jre HAZ } in |g=gidat = J{ e Hn+l(z Stz 2 ndz (36

2h
b

by integration by parts and the recurrence relation for

where S(z/z') = (2 =) |

= |
&

=gl e hils i e ebtained

Hermite polynomials. The integral equation (29) now takes

the form

R T T T T S g T e -
. s 2o S e .




=nlz) = <z<o (37)

The integrals may be evaluated approximately by using

the Gauss-Hermite quadrature (33); the result is
N N
Z an gr(ll) (X) + Z bm 9;2) (x) = 0 - < % <
n=0 m=0
(38)

N N

(3) (4) = £ -0 < 0O
Y a0 b 3 B, gl = o e 2
n=0 m=0
where

22
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ool

¢ Lix) = :
g (x) W Lll(x/xk) “!n(X]'() (39a)
k=0
’““.
g(?N(x) = W Lz B S H R (2 (39b
=i Wy Ly, (x/zy o % 39b)
k=0
Ml
gl 3 Wy Loy (/%)) H_(x)) (39¢)
k=0
M
My
(4) e ] >t - [ T ' o
git(z) = Z W [S(2/20) H . (20) +F(z/28) H_/2)]  (394)
k=0
and My is the order of this guadrature.
Applying Gauss-Hermite formula (33) once more to
Equations (38) results
N N
(1) (2] ' o TRtk 1.2 N
2: an Tjn + E: bm ij 0, J [0 S
n=0 m=0
(40)
N N
Z a 13 4 Z T Ll TR B
n Ln m ‘n .
n=0 m=0

e ;‘. g -—-«w-.-'n*--;.’.. e » g - g — g « T —




Equation (40) is a set of linear equations for the

determinations of the unknown coefficients a,r bn’

n=20,1,2,...N, which may be solved on a digital computer
by means of standard matrix inversion routine.

Once the coefficients a _, bh are determined, the

n m id
capacitance of the discontinuity Cq may be obtained by

integrating the 2m1cess charae density on the wire,
The orthogonality conditions of Hermite polynomials may

be used to perform this integration exactly; the result is

’

(o)
(¢}
=

Notice, therefore, that the capacitance Cd depends only
on the first term of the Hermite polynomials expansion for
the excess charge distribution. In fact, it can be shown

that the capacitance of the discontinuity, as given hy

Equation (41l), is stationary with respect to arbitrary small

variations in the functional form of the excess charge

distribution and is lower bound (c.f., Sectiocn IV of ref.

8. S. Coen and G.M.L. Gladwell, "A Legendre approximation
method for circular microstrip disk problem," IEEE

Transactions on Microwave Theory and Techniques, Vol MTT-25

Nc. 1, January 1977.
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SECTION VI

NUMERICAL RESULTS

No exact or approximate results to the present

o
4

L

, there-

£

problem are known to the authors. It is inten

(

fore, that the results for the eguivalent capacitance of the
septum, obtained from the present analysis, be compared
with experimental results in the future (ref. 9).

Figures 3 through 5 present dimensionless excess charge

n

density on the wire, obtained from the present analysis,
each for a partieular h/b and for a/b = 0.00., 06.01, 0.1.
Note that the excess charge density is an even function of

X, thus only the positive range of X 1is shown. These

\

A

won

results have been obtained with N = 10 1in Eguation (3

2

(NS

and the order of the Gauss-Hermite guadrature is M, =

in equation (39). Note that the curves displace kinks around
x = 1.6 . This phenomenon is more evident for larger values
of h/b and larger values of a/b. It is attributable to
the fact that only a finite order of the Gauss-Hermite guadra-
ture is taken. One would obtain smoother curves if hicher
order quadratures were used.

Figure 6 presents the equivalent capacitance of the

septum C, , normalized to the capacitance of the uniform line
g

9. Dr. Larry Scott, Mission Research Corporation, Albuguergue,
New Mexico, private communication, December 1976.
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(in the absence cf the septum discontinuity) per unit length

times the height of the thin wire from the ground plane, as a

function of h/b for a range of a/b. The same plot is

presented in Figure 7 with h/b as a parameter and a/b as

variables in logarithmic scale.
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Figure 3. Distribution of normalized excess charge
for h/b = 0.1. Note that &ty is an
even function of «x. 7
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of normalized excess

h/b =
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Figure 5.
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Distribution of normalized excess
charge for h/b = 0.7.
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Fioure 6. Capacitance due to septum as function of
septum height. C is capacitance per
unit length of unperturbed wire.
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Figure 7. Capacitance due to septum as
function of septum height.
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